Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Long Fu,^a Zhi-Wei Xu,^a Jia-Lin Ren^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.009 \text{ Å}$ R factor = 0.074 wR factor = 0.148 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The ribbon structure of nickel(II) acetate– 4,4'-bipyridine

One acetate chelates to an Ni atom and the other bridges two Ni atoms in the title compound, *catena*-poly[[di- μ -acetato- $1\kappa O: 2\kappa O'$ -bis[(acetato- $\kappa^2 O, O'$)nickel(II)]]-di- μ -4,4'-bipyrid-ine- $1\kappa N: 1'\kappa N'; 2\kappa N: 2'\kappa N'$], [Ni₂(C₂H₃O₂)₄(C₁₀H₈N₂)₂]_n. The Ni atoms in the centrosymmetric [Ni₂(C₂H₃O₂)₄] arrangement are bridged by the C₁₀H₈N₂ ligands to afford a ribbon structure. The Ni atom, both acetates and the heterocyclic ligand all lie on special positions of *m* site symmetry.

Received 15 August 2005 Accepted 25 August 2005 Online 7 September 2005

Comment

The 4,4'-bipyridine heterocycle has been used in the formation of a large number of metal complexes; in these, the ligand typically functions as a rigid spacer in the resulting linear, layer and network motifs. With nickel(II) carboxylates in particular, the crystallographically authenticated adducts include the 2-methylbut-2-enedioate (Liao *et al.*, 2001), benzoate (Biradha *et al.*, 1999), phthalate (Yang *et al.*, 2003), benzene-1,2,4,5-tetracarboxylate (Wu *et al.*, 2002), pyridine-2,6-dicarboxylate (Wang *et al.*, 2003). The list now includes the title acetate homologue, (I).

Figure 1

A plot showing the numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry codes are as given in Table 1.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title adduct of nickel(II) acetate with 4,4'-bipyridine is a centrosymmetric compound in which two acetates coordinate in the bridging mode to two acetate-chelated Ni atoms across a centre of inversion. The planar four-membered Ni - O - C - Oring lies on a mirror plane so that the two C–O distances are equivalent. The buckled eight-membered Ni-O····C···O-Ni - O - ring lies on another special position of m sitesymmetry. The O atoms surrounding the Ni atom comprise a rhombus, and the presence of the N atoms above and below it leads to a distorted octahedral environment for the metal atom (Fig. 1). The mode of coordination of the pair of Nheterocycles gives rise to the formation of a ribbon structure that propagates along the *a* axis (Fig. 2).

Only a few metal acetates of this spacer heterocycle have been reported to date, these being the cobalt(II) derivative, a diaqua compound that crystallizes with both methanol and water (Zhang et al., 1999), and a copper(II) monohydrate that crystallizes in two forms (Castiñeriras et al., 2002; Conerney et al., 2003).

Experimental

Nickel acetate tetrahydrate (0.5 mmol) and 4,4'-bipyridine (0.5 mmol) were dissolved in N,N-dimethylformamide (8 ml). The mixture was placed in a 15 ml Teflon-lined Parr bomb which was then heated at 383 K for 48 h. Blue crystals of (I) were obtained from the cooled solution in about 50% yield.

Crystal data

$Ni_{2}(C_{1}H_{1}O_{2}) \cdot (C_{1}H_{2}N_{2}) \cdot 1$	Mo Ka radiation
$[v_1_2(C_2)_1_3(C_2)_4(C_{10})_{18}[v_2)_2]$	NIO Ka Taulation
$M_r = 332.96$	Cell parameters from 416
Orthorhombic, Pnnm	reflections
u = 11.278 (2) Å	$\theta = 2.5 - 19.2^{\circ}$
p = 11.532 (2) Å	$\mu = 1.40 \text{ mm}^{-1}$
= 10.802 (2) Å	T = 295 (2) K
V = 1404.9 (4) Å ³	Block, blue
Z = 4	$0.11 \times 0.08 \times 0.06 \text{ mm}$
$D = 1.574 \text{ Mg m}^{-3}$	

Data collection

Bruker APEX CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.440, T_{\max} = 0.921$ 5686 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.059P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.148$ + 0.0628P] where $P = (F_0^2 + 2F_c^2)/3$ S = 1.18 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$ 1307 reflections $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$ 109 parameters H-atom parameters constrained

 $R_{\rm int} = 0.094$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -8 \rightarrow 13$

 $k = -13 \rightarrow 9$ $l = -11 \rightarrow 12$

1307 independent reflections

975 reflections with $I > 2\sigma(I)$

Table 1 Selected geometric parameters (Å, °).

Ni1-O1	2.017 (4)	Ni1-N1	2.101 (6)
Ni1-O2	2.139 (4)		
$D1 - Ni1 - O1^i$	113.9 (2)	O2-Ni1-O2 ⁱ	60.7 (2)
D1-Ni1-O2	92.5 (2)	O2-Ni1-N1	92.9 (2)
$O1 - Ni1 - O2^i$	152.9 (2)	O2-Ni1-N2 ⁱⁱ	87.4 (2)
D1-Ni1-N1	92.1 (2)	N1-Ni1-N2 ⁱⁱ	179.7 (3)
D1-Ni1-N2 ⁱⁱ	87.8 (2)		

Symmetry codes: (i) x, y, -z + 1; (ii) x - 1, y, z.

The C-bound H atoms were positioned geometrically, with C- $H_{pyridyl} = 0.93 \text{ Å}$ and $U_{iso}(H) = 1.2U_{eq}(C)$, and $C-H_{methyl} = 0.98 \text{ Å}$ and $U_{iso}(H) = 1.5U_{eq}(C)$, and were included in the refinement in the riding-model approximation. The methyl groups were rotated to fit the electron density.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

- Biradha, K., Seward, C. & Zaworotko, M. J. (1999). Angew. Chem. Int. Ed. 38, 492-495.
- Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA
- Castiñeriras, A., Balboa, S., Bermejo, E., Carballo, R., Covelo, B., Covelo, B., Borras, J. & Real, J. A. (2002). Z. Anorg. Allg. Chem. 628, 1116-1123.

Conerney, B., Jensen, P., Kruger, P. E., Moubaraki, B. & Murray, K. S. (2003). CrystEngComm, 5, 454-458.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liao, J.-H., Su, C.-T. & Hsu, C.-C. (2001). Acta Cryst. E57, m501-m503.
- Prior, T. J., Bradshaw, D., Teat, S. J. & Rosseinsky, M. J. (2003). Chem. Commun. pp. 500-501.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, X.-L., Qin, C., Wang, E.-B., Hu, C.-W. & Xu, L. (2004). J. Mol. Struct. 692, 187–193.
- Wu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 171–174.
- Yang, S.-Y., Long, L.-L., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, m507–m509.
- Zhang, Y.-S., Enright, G. D., Breeze, S. R. & Wang, S.-N. (1999). New J. Chem. pp. 625–628.